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Abstract. We have derived a set of differential equations describing the spatial and tem- 
porary variation of the Yang-Mills gauge field within the O(4) group under the ansatz that 
the spin connection in R' space is simply our gauge potential and the line element of R' 
Space is expressible in a diagonalizable form. We have also obtained four sets of analytical, 
special solutions to the potential and field strength components. These solutions demon- 
strate soliton-like properties. Though the form of the soliton is more complicated than that 
of the usual pulse-shaped one. these solitons are found to propagate with constant velocity 
c. The energy momentum tensor 7- is also analysed numerically; the form of 7, is found 
to be non-dispersive while the soliton propagates. Moreover, the total energy is found 
always to  be positive definite. 

1. Introduction 

In the first paper of our series [l], we attempted to find classical solutions of the 
Yang-Mills (YM) gauge field equation in Euclidean spacetime within the differential 
geometry regime. In order to look for a special solution, we assigned a set of ansatz 
to the line element of R4 space under the spherically symmetric condition. After a 
series of manipulations, the system of field equations were simplified to only a differen- 
tial gauge field equation describing the variation of an O(4) non-Abelian gauge field. 

Though we were not able to obtain analytical solution to  the stated field equation, 
we have carried out a series of numerical simulations of the field equation f+f+ 
f ( 1  - f ' ) = O  wi th j sd f ldz ,  r/r,,=eC. 

Thus, the field equation has a form analogous to that describing the motion of a 
classical particle in the presence of a damping force and a potential. Under certain 
boundary conditions we have discovered that the motion of the particle is confined in 
an oscillating manner within a finite spatial region. Since the gauge field component 

-(l /r2)f' ,  we have thus discovered that there is an inherent confinement 
property in the gauge field. 

We also emphasize that, in the final part of our investigation, the line elements are 
not time-dependent and our solutions are static in the usual four-dimensional space. 
ii is a naturai procedure to extend our previous generai diiiereniiai geomeiricai method 
to the time-dependent problem relating to an O(4) group gauge potential. As the YM 
gauge field equation system is nonlinear, soliton solutions may exist. Previously, 
pseudoparticles like instantons, magnetic monopoles and melons have been related to 
soliton solutions. However, these solutions do not possess propagating properties 
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[6,10]. In recent years, employing the inverse-scattering method, certain sets of soliton 
solutions of self-dual SU(2) and SU(3) gauge fields were found [ll-131. However, 
these solutions are very complex and it is very difficult to analyse the propagating 
characteristics and the energy variation in the usual manner practised by physicists. 

In this investigation, we start with the line element in R4 space and arrive at a 
system of O(4) gauge field equations. Adopting an ansatz relating the field potential 
and spin connection of R4 space similar to that in [14-161, we are able to obtain four 
sets of analytical solutions to the YM gauge field. From our numerical evaluation of 
these solutions, we find that the solitons discovered are, in general, pulse-shaped ones 
with rather complex structures or are 'composite solitons', like that reported earlier 
for the study of gravitation solitons in the presence of a spherically symmetrical 
terrestrial field [17]. 

F T To et al 

2. Derivation of the YM gauge field equations 

In order to solve the gauge field equations under certain specified conditions and to 
analyse the properties of this gauge field, we introduce an O(4) gauge potential At', 
in the manner described in [lo], where p = 1-4 are  the usual spacetime indices and 
&, p = 1-4 are the Lorentz indices. Note that A:p is antisymmetric on &, p. The O(4) 
group can be resolved into two SU(2) groups, 0(4)-SU(2)xSU(2) ,  and the SU(2) 
gauge potentials A I  (i = 1-3) related to the O(4) gauge potential are ._ .. 

* A " = + ( A ~ ; I ~ ~ ; ~ ~ A $ ) .  I' (2.1) 

W" = a , ~ $  -a,~:i+ A ~ A E ~  - A G A ? ~  " P '  (2 .2)  

Based on the O(4) gauge potential, we can obtain the O(4) gauge field strength tensor 

On the other hand, the gauge field equation in Cartesian coordinates and in Rat 
spacetime can be expressed as 

Y Y (2.3) a F"B^""+A6?F~~P^r"+Ap^tF6C'" = 0, 

In order to integrate the gauge field equation (2.3), one usually takes an ansatz to 
simplify it. For example, the 't Hooft ansatz is [6] 

which leads to the instanton solution. Thus, it is fruitful to find suitable ansatze, arriving 
at certain solutions as accomplished in the past [2-91. However, at present, workable 
ansatze arise from intuition, rather than standard methodology. 

In this investigation, we propose a new ansatz based on a logical idea in the 
framework of differential geometry. First, we construct in R4 space a spin connection 
whose geometrical properties are equivalent to that of the gauge potential in the O(4) 
group. We can therefore assign this spin connection to our O(4) gauge potential. The 
first concrete process along this line is to express the line element ds  in R4 space as 

(2 .5 )  ds2 = g,, dx' dx' 

ds2 = S6j dy" dy' 

where /.L, Y = 1-4. Within R4 space, we introduce the Euclidean metric 

(2.6) 

in which dy6 is a unit orthogonal basis, with &, p̂  = 1-4. 
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As pointed out by Wilczek [16], we can understand certain crucial properties of 
the gauge field by the introduction of the Vierbein field LE, which is an orthogonal 
transformation relating the unit orthogonal basis dy" and another basis dx": 

dy& = Lz dF, (2.7) 

L;L*O = sBg. (2.8) 

g,,, = ~ ; ~ p 6 & ~ .  (2.9) 

(2.10) 

Lz satisfies the orthogonal condition 
. a  

In view of (2.5)-(2.7), the metric g,, and the Vierbein field are related by 
. .  

From the metric g,,, we can write down the Riemann connection in R4: 
r" = ?  W3 

PY 2€! ( J & u + J & - J ~ g w ) .  

Carrying out an orthogonal frame transformation on the Riemann connection r; by 
the Vierbein field L:, we derive the explicit form of our spin connection: 

cfi = + ~ * f i ( ~ ; , ,  - L:,,) + ; L ~ ~ ( L ! , ,  - L&,J + ; L ~ & L * ~ ~ ( L : , , L &  - L~,,L;) .  (2.11) 

It can be proved that [IS, 161 the spin connection C'g is invariant under simultaneous 
rotations of the frames x* and y" .  On the other hand, the O(4) gauge potential also has 
symmetrical synchronization properties; namely, in physical systems, At' is invariant 
under simultnaeous rotations of spacetime and isotopic space. We can therefore assign 

*f = (-;iŝ, (2.12) 

Substituting (2.11) and (2.12) into (2.2) and (2.3) we can obtain the field strength and 
the gauge field equation, and eventually arrive at our analytical'solutions. 

3. Analytical soliton solutions to the O(4) gauge field equations 

We limit ourselves to the diagonalized form of the metric tensor: 

where U- c t - z .  Since g,, is only a function of U, we shall study the solutions 
corresponding to the gauge field which propagate along the r-direction with velocity c. 

First, from (2.5), we can write the form of the Vierbein field: 

(3.2) 
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Substituting (3.2) into (2.12), we arrive at the relevant gauge potential whose non-zero 
components are 

-. , B' A:'= _- A i 4 = - , -  
D A 

.. . C' 
D A 

~. B' 

(3.3) A:''=-l- 5: C' - A2 

.. A' 
A:'' = - .̂ , D' A ? = - I -  

A D 

where the prime indicates differentiation with respect to U. It is tedious, but elementary, 
to obtain the explicit expressions for the non-zero components of the gauge field 
strength: 

^ ^  

F::=B'C' 

F::= ^ ^  - [ ( $ ) ' - T I  B'D' 

F,: = +i [ (g) '--I A'B' 

F;;'= .~ - [ ( g ) ' - 7 ]  C'D 

F;: = -i [ (s) ' - -1 C'D 
F j j = ( s )  ' _ _  A C '  

B'D' 
F,? -j [ (5)' --] A D  

A D  

F,ij=($) ' -02 A'B' 

F?: = -i [ ($)'--] A'C' 
A D  

A D  

0 2  

F j j=  -[($)'-(:)'], 
In our formalism, substituting (3.3) and (3.4) into (2.3), we derive our set of gauge 
field equations: 

["("A")]'+B:''( A D A  - A2 1 D2  I )+($) ' (A'  ___ D A  D' )  +- E'("' D A '  AD':) = o  (3.5) 

(3.6) A2 D 2  

(3.4) 
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(3.10) 

In (3.5)-(3.10) there are four unknowns but six equations, implying that the solutions 
might be overdetermined. In such a situation we first look for restriction(s) for which 
special solutions can be obtained. In particular, we observe that if 

0 
A D' 
D A  
-_-= (3.11) 

the equations in (3.5)-(3.10) are greatly simplified and we arrive at the following two 
special solutions: 

D2 = A2+ a 

C = k  

B is an arbitrary function of U 

where a, k are constants, and 

D = f A  

B, C are arbitrary functions of U 

(3 .12~)  

(3.12b) 

In general, there are an infinite number of solutions of A, B, C, D which satisfy (3.12a) 
or (3.126). However, inspection of (3.3) and (3.4) shows that, there, A and D appear 
as denominators of a number of terms. There is the physical requirement that each 
component of the gauge field potential and field strength in (3.3) and (3.4) must tend 
to zero, as U = et + z -t f m .  Along this line we must note that, in assigning the boundary 
condition to f m ,  we refer to the situation where time is finite. In other words, U -t fm 
pertains to a spatial boundary condition; this is the usual practice in physical systems 
and such a concept was adopted when the instanton solution was obtained. Under 
such a constraint, the functions A, B, C, D should satisfy the following conditions: (i) 
The zero points of A, D are excluded in our solutions; (ii) A, B, C, D are all continuous 
and differentiable within the whole defined range of U ;  (iii) B'/D, B'/A, C ' /D ,  C I A ,  
D'IA, A'/ D all tend to zero as U + im. Moreover, based on the explicit forms of the 
potential and field strength components, as in (3.3) and (3.4). the singular points 
specified by A = 0 or D = 0 must be excluded. 

We note that if A, B, C, D are simply trigonometric functions, conditions (i), (ii), 
(iii) cannot be satisfied simultaneously. In other words, A, B, C, D cannot be expressed 
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as combinations of monochromatic plane wave solutions. We observe that even before 
amving at our analytical solutions, the field strength components exist only in a 
confined region of p. 

Based on the above boundary conditions, we have chosen four sets of solutions 
for the functions A, E, C, D. The corresponding non-zero solutions to the potential 
and field strength components can be obtained from (3.3) and (3.4). These four sets, 
(i)-(iv), are as follows: 

F T To et al 

A( U )  = D ( u )  = u4 - u2 + 1 

B ( u )  =sech(u) 1 C(u)=tanh(u).  

(i) 

(ii) 

._ 
-iA:4 ~. sech2(u) 

U - u 2 + 1  

_-  4u3-2u .. 
A y  = = iA?. 

- 

u4-u2+1 

_. 2(4u3-2u) sech(u) tanh(u) - sech(u)-2sech3(u) F,!:= - 
(us -  u2+ 1)2  u4-u2+1  

- -  2(4u3-2u) sech2(u)+2 sech2(u) tanh(u) 
F::= (u4-u2+1)2 u4-u2+1 

( U 4  + f ) ' / Z  

U 2 +  1 
A( U )  = - 

(2U4+2U2+$)'/2 
U 2 + l  

D(u)  = 

B ( u )  =sech(u) tanh(u) 

C(U)  = 1. 

AI3- - (U'+ 1) 

A14-. (u2+1) 
( U4 + y 2  

.. 2sech3(uj-sech(u) 
(2U4+2U2+5)1/2 1 -  

.- 2sech3(u)-sech(u) 
1 - 1  
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.. sech(u) [tanh(u)(u2+l)[6sech2(u)- 11 
(2u4+2u2+3)”2 F:: = 

+[2 sech2(u) -1](2u3-3u) 

I F:: .. = (U4 + $)“2 [tanh(u)(u2+1)[6sech2(u)-ll 

+ [2 sech2(u)- l](Zu3-u) 

.. 
= iF::. 

(iii) A(u)=tanh2(u)sech(u)+1 

.. tanh3(u) sech2(u)[2-3 tanh2(u)] . ji A y  = =IA, , I {[tanh2(u) s e c h ( ~ ) + l ] ~ +  111’* 

1 -2sech2(u) 
.. sech(u) [ F‘’= -{l+[tanh2(u) ~ech(u)]*]”~ 

+tanh2(u) sech(u)[2-3 tanh2(u)][l +tanh’(u) sech(u)l 

([I +tanh2(u) sech(u)12 1 +[l +tanh2(u) sech(u)12 

! 
11 1 + 1 

.. 
= -iF,’: 

1 -2sech2(u) 
l+tanh’(u) sech(u) 

Fly = sech( u )  +tanh2(u) sech(u)[2-3 tanh2(u)] 

11 1 + 
X([l+tanh2(u)sech(u)]’ l+[ l+ tanhz(u)  sech(u)]’ 

1 

.. 
= -iF,’f. 
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A(u)=tanh(u)+Z 

D(~)={[ tanh(u)+2]’+1}”~ 

B ( u )  = tanh2(u) sech(u) 

C ( u ) = l .  

_. tanh(u) sech(u)[2 sech’(u) -tanh‘(u)] A:’= - I {[tanh( U) + 2]’+ l}’(’ 
.- . tanh(u) sech(u)[2 sech2(u) -tanh2(u)] 

tanh(u) + 2 
A:4= -1 

tanh4(u)+sech2(u)[ll sech2(u) -91 
I_ -sech( u )  

F’’={l +[2+tanh( u ) ] ~ } ’ / ~  

+ [Z-3 tanh2(u)][2+ tanh(u)] tanh(u) sech2(u) I 
11 l +  

([2+tanh(u)]’ 1 +[2+tanh( U)]’ 

tanh4(u)+sech2(u)[11 sech’(u) -91 
2+tanh(u) 

F:,* = sech( U )  

I -tanh(u) sechz(u)[2-3 tanh’(u)] 

11 ‘([Z+tanh(u)I2 l +  l+[2+tanh(u)l2 

4. Analysis of solutions 

In figures l(a) and l(b), we plot the non-zero Ati versus z and Fztversus z components 
for set (i) solutions at f = 0. Clearly, some of the components are equal and there are 
only three different potential components and two different field strength components. 
As the velocity of propagation is c, these ‘composite pulse-shaped’ solitons travel to 
the right at f > 0. Similarly, the non-zero A$ versus z and FZt versus z solutions are 
indicated for sets (ii)-(iv) in figures 2-4, respectively. Many soliton solutions in well 
known nonlinear equations (e.g. Kdv, modified Kdv) are single pulse or single kink- 
antikink types of solutions. Here we have obtained solutions with more complex 
features, as shown in figures 1-4. We cannot analyse the structure of such composite 
solitons and deduce meaningful physical characteristics until we investigate the analogy 
between our solitons and physical particles. 

We note that some of the potential and field strength components are imaginary 
members. This result is quite obvious as, in Euclidean space, the time variable is 
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Figure I. ( a )  Potential components Af', At', Ay versus the spatial variable z far solution 
set (i). ( b )  Field strength components F,i2, F;: versus z for solution set (i). 

imaginary while the Apropagation factor U is real; the appearance of the imaginary 
number i in A;p, F f f  is natural. If we express our system in Minkowsky space, we 
expect i to be eliminated. 

5. Distribution of energy density in our O(4) YM gauge field 

Starting from the Lagrangian in the gauge field 
L = - ~ ~ ; b ~ s b  

4 *" LL" 
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Figure 2. ((I) Potential components AY, f3?, Ay versus the spatial variable z for Solution 
set (ii). ( b )  Field strength components F14,f:2 versus I for solution set (ii).  

we can write down the energy-momentum tensor of the field: 

T,. = F ; ' ~ F $ ~ + ; s , , F ~ F ; ; .  (4.2) 

The tensor T,. must satisfy the following conservation law: 

J,T,, = 0. (4.3) 

Drawing an analogy between the electromagnetic field and the YM gauge field, we 

EfP^ = FfF (4.4a) 

can write the non-Abelian electric field tensor as 
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Figure 3. ( a )  Potential components A!', Ay,  At versus the spatial variable I for solution 
set (iii). ( b )  Field strength components F::, F:: versus z for solution set (iii). 

and the magnetic field tensor as 

BfP^= 2E.k Fdl?, I k  (4.46) 

Substituting (4.4) into (4.21, we obtain the corresponding energy density component 

T~~ = f ( ~ f s ~ f P ^  + ~ f f i ~ f f l ) .  (4.5) 

Clearly, we can demonstrate the T4& versus z relation using our four sets of particular 
solutions and relations (4.4) and (4.5). 
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0.2 

0 -  

-0.2 

-0.4 

.O.E 

..* C 

- 

- 

. .  . .  . .  
- 

^^ . .  . . .. A Y  ................... .. 
1  ̂- 

A: ---.----- 
2 

' I  I '  ' ' I ' I  ' I  ' I  ' ' I  I ' ' I  " 

............ P- 

.. 
Figure 4. ( a )  Potential components At', A:4, AY versus the spatial variable z for solution 
set (iv). ( b )  Field strength components F,i2, F,i: versus i for solution set (iv). 

.. ^ ^  .. 
It is @eresting to remark that for set (i) solutions, F,, - i j - _ ~ 1 4 - - i ~ : 4 ) = - i ~ : ~ ~ ~ p  - 

Fl: = -F:;= T~F;: = :.iF;;: In view . . . . . . . .  of (4.4~1) and (4.4b), we find that .. Fli:-~ -E;], 

It is easy to show that while the electric and magnetic fields are non-zero in general, 
the electric energy in Euclidean space is zero when we add the energies corresponding 
to the various components together (due to the existence of i ) ,  indicating that the 
energy density is zero; this property also occurs for the magnetic energy sum. In other 
words, (4.5) gives, in our casel T44 = i(O+ 0) = 0. I n  the self-dual situation ofthe previous 
instanton study [14], E f b E f p  = - B f p B f b ,  leading to TM=O. Thus, the energy density 
is zero for both cases, but for different reasons in Euclidean space. 

F::=-E:4, F:4)=-E:3,F::=-BY, F:~=B:',F:,4=--E55,F~~=-E:'and F;:=B:4. 
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Figure 5. Momentum-energy pseudo-tensor cam- 
ponents Tu versus i for: ( a )  Solution set (ii); ( b )  
solution set (iii); (c )  solution set (iv). 

The Tu versus z relations for our solutions sets (ii)-(iii) and (iv) are shown in 
figures 5(a), ( b ) ,  (c )  respectively. Here the total energy density is positive-definite in 
each case. We observe an energy pulse going along the z-direction with velocity c. 

5. Conclusions 

(i) In this investigation we have derived a set of differential equations relating the 
'field functions' A, B, C, 0, adopting an ansatz as specified in section 2. This set of six 
equations contain only four variable functions, and there exist certain overdetermined 
properties in our system. Based on this set of differential equations, we obtained the 
representation of the YM gauge field components and the field strength components, 
as presented in (3.3) and (3.4). 

(ii) Needless to say, it is difficult to obtain general solutions to A:' and F,"! and 
we can only look for special solutions at this stage. One obvious choice is to confine 
ourselves to the situation where A'/ D - D ' / A  = 0. We are then able to obtain analytical 
solutions to the potential and field strength components by fixing the forms of the 
arbitrary functions B and C. Since we are looking for soliton solutions, we choose B 
and C to take hypogeometrical forms. However, we must emphasize that the boundary 
conditions discussed in section 3 must be satisfied when choosing B and C. We thus 
beiieve that there exist certain inherent soliton-iike property in our set Ot held equations. 

(iii) We have found that both the potential and field strength components appear 
as 'composite pulse-shaped' solitons propagating with velocity c in the z-direction. 

(iv) We have also written down the energy-momentum pseudo-tensor for the VM 

gauge field and have plotted the energy density versus z relation for our sets of solutions 

^ ^  .. 
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found. The first set of solution leads to a zero value of Tu, but based on reasons 
different from that in the instanton case of the self-dual gauge field. It would be fruitful 
to find out the meaning of Ta4= 0 in Minkowsky space for both these situations in the 
future. 
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